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Abstract. Geologic processes strongly influence water and sediment quality in aquatic
ecosystems but rarely are geologic principles incorporated into routine biomonitoring studies.
We test if elevated concentrations of metals in water and sediment are restricted to streams
downstream of mines or areas that may discharge mine wastes. We surveyed 198 catchments
classified as ‘‘historically mined’’ or ‘‘unmined,’’ and based on mineral-deposit criteria, to
determine whether water and sediment quality were influenced by naturally occurring
mineralized rock, by historical mining, or by a combination of both. By accounting for
different geologic sources of metals to the environment, we were able to distinguish aquatic
ecosystems limited by metals derived from natural processes from those due to mining.
Elevated concentrations of metals in water and sediment were not restricted to mined
catchments; depauperate aquatic communities were found in unmined catchments. The type
and intensity of hydrothermal alteration and the mineral deposit type were important
determinants of water and sediment quality as well as the aquatic community in both mined
and unmined catchments. This study distinguished the effects of different rock types and
geologic sources of metals on ecosystems by incorporating basic geologic processes into
reference and baseline site selection, resulting in a refined assessment. Our results indicate that
biomonitoring studies should account for natural sources of metals in some geologic
environments as contributors to the effect of mines on aquatic ecosystems, recognizing that in
mining-impacted drainages there may have been high pre-mining background metal
concentrations.
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INTRODUCTION

Global anthropogenic metals inputs (atmospheric

deposition and industrial discharge) to aquatic ecosys-

tems exceed that due to natural processes (Nriagu and

Pacyna 1988). At local and regional scales, the

contributions of natural vs. anthropogenic metal loading

into aquatic ecosystems are poorly constrained. In

Colorado, USA, over 13 840 km of stream and river

have been designated as impaired (Clean Water Act’s

section 303(d) list in 2008; available online)5 because of

elevated metals (aluminum, cadmium, copper, lead,

iron, selenium, and zinc). Generally, this degradation

is assumed to result from the mineral-extraction

economy that began in central Colorado in 1859

(Chronic and Chronic 1972). However, central Colorado

was heavily mineralized during the Laramide orogeny

(75 to 45 million years ago), a period of mountain

building in western North America that involved

emplacement of plutons and associated sulfide mineral

deposits of various types (e.g., Tweto and Sims 1963).

Metals from these sulfide minerals have been released

into aquatic ecosystems, but the relative contributions of

weathering of unmined hydrothermally altered rock vs.

historical mining is largely unknown.

Hydrothermal alteration can be an integral part of the

ore-forming process in such a way that different suites of

minerals are created (and locally extracted by mining) in

areas with different types of hydrothermal alteration.

Mines can be located in areas where hydrothermal

alteration has resulted in a mineral deposit of sufficient

metal concentration that it is economic to extract metals

from the rock. However, mines or mineral deposits of

certain deposit types are commonly surrounded by a

more diffuse halo of altered rock that also contains

concentrations of metals likely above crustal abundance.

Because of these ore-formation processes it is possible

that elevated concentrations of metals in bedrock

influenced water and sediment quality in streams prior

to mining (Tooker 1963, Tweto 1968, Wanty et al. 2002,
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2009, Verplanck et al. 2009), although it is difficult to

estimate the pre-mining metal concentrations.

Biological assessment traditionally attempts to differ-

entiate between the natural condition of a stream and

the condition of a stream affected by metals. In general

there are two approaches: those that compare stream

condition at sites free of mining and metals contamina-

tion to sites that are mined or contaminated by a

gradient of metal concentrations (e.g., Canfield et al.

1994, Schmidt et al. 2002), and those where sample

locations are randomly selected throughout a watershed

or region and used to generalize about the effects of

metals (or abandoned mine lands) on stream condition

throughout the study area (e.g., Clements et al. 2000).

Biological assessments rarely resolve the differences

between biological communities affected by natural vs.

anthropogenic sources of metals. As a result, the degree

(number of streams and extent of contamination within

streams) to which natural geologic deposits cause

elevated metal concentrations and adversely affect

stream communities is largely unknown.

We evaluate the extent to which historic mining vs.

natural sources of metals (hydrothermal alteration)

influences the metal concentrations and aquatic com-

munities in streams of central Colorado. We tested two

hypotheses: (1) that elevated metal concentrations in

water and sediment and depauperate aquatic inverte-

brate communities were restricted to historically mined

catchments, and (2) that metals and aquatic insect

communities in streams are controlled by geologic

processes. These questions were evaluated by collecting

a large database of water and sediment geochemistry

and aquatic insect communities from catchments that

include various ore deposit types and styles of hydro-

thermal alteration. To test the first hypothesis these data

were classified based on disturbance (i.e., mined vs.

unmined). To test the second hypothesis these same data

were reclassified based on mineral-deposit criteria. This

approach facilitated the development of lithologic-

specific toxicological and ecological baselines. These

baselines were used to better understand the role that

geologic sources of metals play in structuring aquatic

ecosystems in mineralized regions and to allow for a

more quantitative assessment of the effect of historical

mining on aquatic ecosystems.

METHODS

Study area and design

The study area is central Colorado, USA, from

Wyoming to New Mexico, an area of ;54 000 km2 that

includes most of the Southern Rocky Mountain

Ecoregion, representing ;20% of the land area of

Colorado (Fig. 1; Omernik 1987). This area includes a

regional geologic feature, the Colorado Mineral Belt

(Tweto and Sims 1963), that cuts diagonally across the

study area. Mineral deposits in this zone have been

exploited for base and precious metals for the past 150

years. Within this area, 1165 km of stream and river are

classified as impaired (Clean Water Act section 303(d)

list; see footnote 5) by metals commonly associated with

mineralized areas and mined lands (aluminum, cadmi-

um, copper, lead, iron, and zinc). The climate of the

study area is temperate continental, with generally .50

cm of precipitation per year, especially at higher

altitudes. Much of this precipitation occurs as snow in

winter or as rain primarily between June and August.

Vegetation ranges from deciduous cover at lower

altitudes and in riparian zones, to conifer forests, and,

at the highest altitudes, open tundra. Soils within the

study area are thin (rarely greater than 10 cm thick) to

nonexistent, the latter occurring in areas dominated by

bedrock outcrops. Thicker (up to a meter or more)

FIG. 1. Map of central Colorado (USA) study area showing
sampled catchments. Catchments are classified on the basis of
disturbance by historical mining and mineral deposit type.
Rivers and streams (1165 km) depicted are on the Clean Water
Act Section 303(d) list as impaired by aluminum, copper,
cadmium, iron, lead, and/or zinc.
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immature soils, as well as unconsolidated overburden,

are found intermixed at lower elevations and along

streams.

The sample locations in this study are from small

catchments (first- and second-order streams) at high

altitude, ranging from 2330 to 3550 m above sea level.

Catchments were selected that were underlain by a single

predominant lithology (rocks of similar geochemistry

and mode of formation). Drainage area boundaries

(herein called ‘‘catchments’’) were defined with digital

elevation models (DEM; 303 30 m resolution) using the

ArcGIS 9.2 geographic information system software

(ESRI 2006, Gesch 2007). Catchment boundaries along

with geologic maps and databases of mine locations (see

Geologic mapping, below) were used to classify each

sample location (see Site classification, below) prior to

going into the field (Fig. 1).

Geochemical and benthic macroinvertebrate samples

were collected from these locations during base-flow

conditions in the summers (July–August) of 2004–2007

(Fig. 1; Church et al. 2009, Wanty et al. 2009).

Geochemical samples were collected from streams of

various sizes (i.e., watershed area, site elevation,

discharge), but biological data collection was confined

to a narrower range of stream sizes to decrease the role

variable habitat plays in structuring the aquatic inver-

tebrate community. Although all field studies are

influenced by confounding variables such as habitat,

neither small-scale (i.e., percentage cover, substrate size)

nor large-scale habitat factors (i.e., watershed area,

elevation, percentage watershed vegetation) were strong

predictors of mean biological responses in this data set

(Schmidt et al. 2010). As a result, 198 locations were

sampled for geochemistry (n ¼ 263 samples for water

and sediment) and 94 locations for benthic invertebrates

(n ¼ 110 samples, five replicates each) were included in

this analysis. The differences between the number of

samples and that of site locations are interannual

replicates included to add annual variability of the

benthic communities and geochemistry into the analysis.

Duplicates of geochemical samples also were collected

from ;10% of sample locations.

Geologic mapping

Databases from the State of Colorado (Sares et al.

2008) and the Federal Government (Mineral Resource

Data System, USGS 2005) were used to determine

deposit type and disturbance by mining (Fig. 1). The

number of mine openings and a qualitative estimate of

the volume of mine tailing in a catchment were derived

from these databases as a description of the extent of

disturbance by mining within a catchment. Catchments

were characterized as ‘‘mined’’ if publically available

data indicated that a commodity from the site was

produced. Catchments not mined but with disturbances

such as adits and prospect pits were classified as

‘‘unmined’’ because no commodity was produced and

it was likely the extent of disturbance was minimal.

Hydrothermal alteration was mapped and character-

ized using mineral maps derived from analysis of

Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER) remote-sensing data (e.g., Rock-

well 2009) and verified at the local scale with Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS) data.

Hydrothermal alteration identified using the ASTER

data was classified into quartz–sericite–pyrite (QSP) and

propylitic on the basis of spectrally identified mineral

assemblages. Ecologically these two types of alteration

are important because they are descriptive of acid-

generation potential. QSP alteration contains pyrite in

host rock with little acid-neutralizing capacity resulting

from the alteration process. As the pyrite weathers it

releases sulfuric acid, and drainages from these areas

often have pH values below 7. In contrast, propylitic

alteration emplaces acid-neutralizing minerals (e.g.,

calcite, chlorite, and epidote) into host rocks that

weather to release drainage that is often near-neutral

in pH. The mapping of hydrothermal alteration using

remote-sensing data is possible only where the ground is

not covered by vegetation, so some watersheds in the

study area are hydrothermally altered but not detected

by these methods. For more detailed information on the

geological mapping and for the characteristics of

principal hydrothermal mineral-deposit types found in

the study area see Church et al. (2009).

Geochemical analysis

Water samples were collected using methods de-

scribed in Wilde et al. (1998) to meet the requirements

of the biotic ligand model (HydroQual 2007). Routine

water-quality parameters (temperature, conductivity,

and pH) were measured in the field using a Horiba D-

24 combination meter (Wilde et al. 1998). Meters were

calibrated at the beginning of each day with certified

standards, and checked periodically throughout the day.

All water samples were filtered through an Acrodisc

Premium 25-mm syringe filter with 0.45-lm nylon

membrane (Pall Corporation, Port Washington, New

York, USA) in the field and stored at 48C until analyzed.

Water samples for dissolved organic carbon (DOC)

were filtered in the field through a 0.70-lm glass-fiber

filter, acidified with concentrated hydrochloric acid (12

mol/L) to a pH , 2, and stored in baked amber-glass

bottles. Dissolved trace-metal samples were acidified in

the field with concentrated ultrapure nitric acid (13 mol/

L) to a pH , 2 and stored in polyethylene bottles.

Samples for anions were collected and stored under

refrigeration in polyethylene bottles. Streambed sedi-

ment samples were collected from surfaces of fluvial

sediment deposits in pool or low-velocity areas along the

sampled reach using a plastic scoop. The samples were

composited, wet-sieved through a 2-mm stainless-steel

screen with ambient stream water, and collected into a

plastic pan. In the laboratory these samples were

prepared for chemical analysis by air-drying and dry-

sieving them through a 150-lm stainless-steel screen.
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Water analyses were conducted at the laboratories of

the USGS Central Mineral and Environmental Science

Center in Denver, Colorado, USA. A Shimadzu TOC-

5000A organic carbon analyzer was used to measure

DOC. Concentrations of major cations were analyzed

by inductively coupled plasma-atomic emission spec-

trometry (ICP-AES) and ICP-mass spectrometry (ICP-

MS) whereas trace-metal concentrations were measured

by ICP-MS, and major anions were measured by ion

chromatography (Taggart 2002). High concentrations of

SO4
�2 (.25 mg/L) were determined by ICP-AES and

alkalinity was determined by titration (Taggart 2002).

Sediment samples were prepared using total digestion

and EPA 3050B leach procedures (U.S. EPA 1996) and

analyzed by both ICP-AES and ICP-MS.

Field blanks were prepared by analyzing doubly

deionized water that was transported from the labora-

tory to the field, and treated as a sample at a field site. A

similar set of field blank samples was collected as for

regular samples. Results of analyses of the field blanks

were generally below detection, although one blank

showed slight contamination, particularly for iron. Field

duplicate samples collected the same day as the suspect

field blank showed good reproducibility. In most cases,

reproducibility was within 610%, although errors

increased if elements were present near their lower

determination limits. No duplicate samples were includ-

ed in this evaluation.

Aquatic invertebrate sampling

At each site five replicate benthic samples were

collected using a 0.1-m2 Hess sampler (350-lm mesh

net) from shallow riffle areas (,0.5 m deep). Represen-

tative sample localities were selected on the basis of the

following criteria: location was a riffle or run habitat

unit, depth was 0.10–0.25 m, and substrate was

representative of the stream reach. Overlying substrate

was scrubbed to dislodge and capture all algae, diatoms,

and invertebrates, while inorganic debris was removed.

Underlying substrate was disturbed to a depth of ;10

cm and the remaining material was sieved using a 350-

lm mesh sieve. All organisms retained were preserved in

80% ethanol in the field.

In the laboratory the samples were processed to

remove debris, and subsampled until 300 organisms

(610%) were removed from the sample (Moulton et al.

2000). Invertebrates were identified to the lowest

practical taxonomic level—genus for most taxa (Merrit

and Cummings 1996, Ward et al. 2002). Taxa observed

at fewer than 20 sites were removed from the analysis to

reduce the influence of rare taxa on study results.

Taxonomic ambiguities—closely related specimens iden-

tified at different levels of taxonomic resolution for

many reasons (i.e., inability to distinguish characteristics

of early instars or damaged specimens)—were resolved

by distributing individuals identified at coarser levels of

taxonomic resolution to finer levels depending on their

abundance (Cuffney et al. 2007). The five replicate

benthic samples were averaged and used to calculate

benthic macroinvertebrate community metrics.

Although many other metrics were evaluated, we only

evaluated the total generic richness of Ephemeroptera,

Plecoptera, Tricoptera (EPT); an EPT index is presented

here for simplicity. Typically, five major groups

(Ephemeroptera, Plecoptera, Tricoptera, Diptera, and

Elmidae) comprise nearly 100% of the benthic fauna in

Colorado streams (Ward et al. 2002). In fact, EPT

(57%), Diptera (24%), and Elmidae (5%) comprise the

majority (86%) of average total taxa richness at sites

observed in this study. Members of those orders that

comprise the EPT index are often cited as some of the

taxa most sensitive to metals (Plafkin et al. 1989, Lenat

and Barbour 1994), and the loss of these taxa can

disrupt energy transfer through the stream food web

(Carlisle and Clements 2005). EPT index has also been

cited as a sensitive metric useful for regional-scale

assessments of metal contamination (Clements et al.

2000).

Determination of toxic units

Because most metal-contaminated streams in Colo-

rado are affected by mixtures of cadmium (Cd), copper

(Cu), and zinc (Zn), we used a cumulative measure

(assuming additive metal toxicity) of aqueous metal

toxicity (Sprague 1970, Clements et al. 2000). The

method relies on the biotic ligand model to account

for site-specific influences of water quality on metal

toxicity to aquatic organisms (HydroQual 2007,

Schmidt et al. 2010). Toxic units for water (TUwat) are

defined as

TUwater ¼
X

i

mi

ci

a ratio where mi is derived from the biotic ligand model

and is the calculated metal accumulated on the biotic

ligand, given the specific-site water conditions relative to

that amount of metal accumulated on the biotic ligand

in water of character specified by the U.S. EPA (2003,

2007) and criterion continuous concentration values, ci,

summed for Cd, Cu, and Zn (U.S. EPA 2009).

Theoretically, at TUwat � 1 all metal concentrations

are below criterion continuous concentration, and are

presumed to be protective of 95% of aquatic organisms

(Stephan et al. 1985, Schmidt et al. 2010).

Because less is known about the mechanisms by which

metals in sediment are accumulated and cause toxicity in

aquatic organisms, an empirical model was used to

estimate toxicity. Sediment toxicity due to metal

mixtures was calculated as described above except where

mi is the total metal concentration and ci is the criterion

value for the (ith) metal in sediment, summed for Cd,

Cu, and Zn. Criterion values used to calculate sediment

toxic units (TUsed) were derived from the probable-

effects concentration, consensus-based sediment quality

guidelines (PEC-CBSQG; MacDonald et al. 2000).
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Probable-effects concentrations are empirically derived

thresholds above which harmful effects are likely to be

observed.

Site classification

To test our first working hypothesis, that elevated

concentrations of metals in water and sediment and

depauperate aquatic invertebrate communities are re-

stricted to historically mined catchments, all samples

were classified by the presence (n ¼ 62 samples for

geochemistry, n¼ 29 samples for biology) or absence (n

¼ 201, 81 samples, respectively) of disturbance by

mining. To test our second working hypothesis that

geologic processes (i.e., hydrothermal alteration and

mineral-deposit type) control stream geochemistry and

aquatic communities, we reclassified our samples based

on the presence of hydrothermal alteration, mineral-

deposit type, and mining (Fig. 2, Table 1). Lithologic

reference (n ¼ 62, 15 samples, respectively) catchments

are areas where hydrothermal alteration was not

detected in the AVIRIS/ASTER images and were not

mined. Hydrothermally altered (n ¼ 139, 66 samples,

respectively) catchments are areas with detectable

hydrothermal alteration at the earth’s surface, but were

not mined. Because not all hydrothermal alteration

results in the formation of a mineral deposit, not all

hydrothermally altered sites were mined or classified

into different mineral deposit types (Fig. 2, Table 1). The

effects of different styles of hydrothermal alteration

(propylitic vs. QSP) on unmined polymetallic vein

deposits were indistinguishable and were lumped to-

gether into one category, background polymetallic vein

deposits (n ¼ 25, 10 samples, respectively). Porphyry

mineralized sites, which were not mined, were classified

as background porphyry deposits (n ¼ 15, 7 samples,

respectively). Because few mined and unremediated

porphyry style deposits were found within the study

area, the effect of mining and remediation on porphyry-

style deposits was not evaluated.

Statistical analysis

Multiple working hypotheses were evaluated requir-

ing tests between groups of data classified based on

disturbance (i.e., presence or absence of mining),

hydrothermal alteration (propylitic and QSP), and

mineral-deposit type (polymetallic vein and porphyry).

Because normality and homogeneity of variance could

not be achieved in most log-transformed data, differ-

ences in means were tested using nonparametric

procedures. A Wilcoxon ranked sum test (P , 0.05)

or Kruskal-Wallis ANOVA by ranks and Dunn’s

multiple-comparison test were used to evaluate differ-

ences among groups (Siegel and Castellan 1988, Sokal

and Rohlf 2003). Boxplots were used to depict the

results for ease of interpretation. All statistical compar-

isons were developed using R software version 2.7.2 (R

Development Core Team 2008).

RESULTS

Samples were collected from diverse lithologies

resulting in a wide spectrum of aqueous and sediment

geochemical characteristics (Table 2). Disturbance by

mining was extensive, with up to 146 inactive mine

openings (estimate of the number of mines within a

catchment), and .700 000 m3 of historic mine tailings (a

qualitative visual estimate of the amount of earth

disturbed and deposited on the surface) were observed

in some catchments. The presence of mineralized rock

and historic mining on stream water and sediment

caused some streams to have very low pH (, 4), and

concentrations of metals in water and sediment in excess

of 200 and 50 times, respectively, the thresholds thought

safe for aquatic organisms (Table 2).

Water (Fig. 3A) or sediment (Fig. 3B) from mined (n

¼ 62) catchments were statistically more toxic than in

unmined (n ¼ 201) catchments. The average EPT

(Ephemeroptera, Plecoptera, Tricoptera) index (Fig.

3C) in unmined catchments (n ¼ 81) was statistically

higher than in mined catchments (n ¼ 29). However,

water or sediment exceeded toxic thresholds in 31 of 201

unmined (Fig. 3A, B) catchments, and the lowest EPT

index (0.2; Fig. 3C) was observed in an unmined

catchment. Elevated metal concentrations in water and

sediment likely created an environment that supported

FIG. 2. Breakdown of the catchment classification, with
sample size (n) given for the geochemical (first number) and
aquatic invertebrate community (second number). Unmined
catchments were subdivided into lithologic reference and those
influenced by hydrothermal alteration. Hydrothermally altered
catchments were further subdivided by mineral-deposit type.
Mined sites from a single deposit type (polymetallic veins,
PMV) were reclassified into two distinctly different styles of
hydrothermal alteration: propylitic and QSP (quartz–sericite–
pyrite). The superscript numbers define groups of data that
were used to test different hypotheses: (1) Data used to test the
hypothesis that elevated concentrations of metals in water and
sediment and depauperate aquatic communities are restricted to
historically mined catchments, with results presented in Fig. 3.
(2) Data used to test the second hypothesis, that geologic
processes (i.e., hydrothermal alteration and mineral deposit
type) control stream geochemistry and aquatic communities,
with results presented in Fig. 4. (3) Data used to test the second
hypothesis, that geologic processes (i.e., hydrothermal alter-
ation and mineral deposit type) control stream geochemistry
and aquatic communities, with results presented in Fig. 5.

TRAVIS S. SCHMIDT ET AL.874 Ecological Applications
Vol. 22, No. 3



few EPT taxa in both mined and unmined catchments,

rejecting our first working hypothesis, that metals and

depauperate benthic communities were confined to

mined catchments.

Sites were reclassified to test if hydrothermal alter-

ation was a determinant of metals in streams and

depauperate benthic communities (Fig. 2, Table 1).

Lithologic reference catchments had water (Fig. 4A) and

sediment (Fig. 4B) concentrations (n¼ 62) that averaged

below TU (toxic unit)¼ 1 and had a significantly higher

EPT index (Fig. 4C, n ¼ 15) as compared to either

hydrothermally altered (n ¼ 139, 66 geochemistry and

EPT index, respectively) or mined catchments (n¼62, 29

geochemistry and EPT index respectively). Both un-

mined but hydrothermally altered catchments and

mined catchments had numerous outliers, suggesting

multiple groups were aggregated within each class based

on the presence of hydrothermal alteration or mining

alone. To reduce the observed within-group variation in

both catchment types, unmined but hydrothermally

altered and mined catchments were reclassified by

deposit type (Fig. 2).

Statistical differences were not observed between

lithologic reference catchments and unmined polymetal-

lic vein deposits for water (Fig. 5A) or sediment toxicity

(Fig. 5B) or EPT index (Fig. 5C), but were significantly

different from background porphyry deposits. Sedi-

ments from background polymetallic vein (PMV)

catchments rarely exceed TU ¼ 1, while background

porphyry-deposit waters and sediments had average

concentrations in excess of this threshold. The EPT

index at background PMV catchments averaged lower

than that observed at lithologic reference sites, but this

difference was not statistically significant. However,

background porphyry deposits were observed to nearly

exclude aquatic life, with a median EPT index , 2, and

were significantly different from both lithologic refer-

ence and background PMV sites.

The effect of mining and hydrothermal alteration type

was found to be distinguishable for PMV deposits.

Water (Fig. 5A) and sediment (Fig. 5B) from mined and

propylitically altered catchments containing PMV de-

posits were less toxic than those from catchments

containing mined and QSP-altered sites. No water

samples and only a few sediment samples from the

QSP-altered and mined class were found to be less than

TU ¼ 1 while propylitically altered and mined PMV

deposits averaged TU , 1 for water and sediment

averaged TU . 1, but both were less than those found

for QSP-altered mined catchments. Although it appears

that all QSP-altered catchments produce very toxic

waters and sediments, it should be noted that unmined,

PMV deposits that are QSP altered did not exceed

TU ¼ 1.

EPT index (Fig. 5C) for lithologic reference, unmined

PMV deposits, and mined propylitically altered PMV

deposits were statistically indistinguishable. Catchments

containing background porphyry deposits were nearly

devoid of EPT taxa, while mined QSP-altered PMV

deposits also had a low average EPT index, as compared

to lithologic reference and unmined PMV deposits.

Mined QSP-altered PMV deposits were indistinguish-

able from unmined porphyry or mined propylitically

altered PMV deposits.

DISCUSSION AND CONCLUSIONS

Historically, ecological risk assessments of abandoned

mined lands have presumed that the presence of

historical mining in a catchment was the primary cause

of elevated concentrations of metals in water and

TABLE 1. Definitions of the geologic classification scheme used to test the working hypotheses, and used in Figs. 2–5.

Classification Definition

Lithologic reference unmined catchments where hydrothermal alteration was not detected
Hydrothermally altered unmined catchments with detectable mineralization or alteration
Propylitic alteration style of hydrothermal alteration that emplaces acid-neutralizing minerals such as calcite

(CaCO3), epidote (Ca2(Al,Fe3þ)3(SiO4)3(OH), and chlorite (variable formulae, cf. Hey 1954)
into host rocks

Quartz–sericite–pyrite
(QSP) alteration

style of hydrothermal alteration that emplaces acid-generating minerals such as pyrite (FeS2)
into host rocks, and consumes acid-neutralizing minerals as part of the alteration process

Polymetallic vein, PMV mineral deposit composed of a mixture of minerals commonly containing copper, cadmium, and
zinc and emplaced in host rocks as long fractures and vein structures

Porphyry mineral deposit type that includes copper and molybdenum-sulfide minerals such as pyrite,
chalcopyrite (CuFeS2), and molybdenite (MoS2), characterized by large volume and high
sulfide content

TABLE 2. Median and range of physicochemical parameters
measured in this study.

Parameter Median Measured range

Mine openings 0 0–146
Volume of mine tailings (m3) 0 0–540 000
Discharge (m3/s) 0.1 .1–1.5
Temperature (8C) 10.2 0.8–24.1
pH (standard units) 7 3.5–8.5
Hardness (mg/L) 33.8 5–163
Cd2þ (lg/L) 0.01 .0.02�561
Cu2þ (lg/L) 0.25 .0.5�170,00
Zn2þ (lg/L) 1.5 .0.5�118 000
Toxic units for water, TUwat 0.12 0.01–268
Cd in sediment (mg/kg) 1 1–63
Cu in sediment (mg/kg) 12 0.5–7 270
Zn in sediment (mg/kg) 107 19–13 100
Toxic units for sediment, TUsed 0.57 0.26–52
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sediment. We demonstrate here that hydrothermally

altered rock alone in a catchment also may result in

elevated concentrations of metals in water and sediment

(Church et al. 2009, Verplanck et al. 2009, Wanty et al.

2009). Novel to our work is that risks to aquatic life

were quantified and it was determined that metals

released naturally from weathering of the hydrother-

mally altered rock limit the EPT (Ephemeroptera,

Plecoptera, Tricoptera) index. Because historical mines

FIG. 3. Effect of mining on water and sediment toxicity and
metal-sensitive aquatic invertebrate communities. Different
lowercase letters indicate significant differences at P � 0.05
based on the Wilcoxon rank-sum statistic (W ). Toxic units are
the summed concentrations of Cd, Cu, and Zn, normalized by
procedures described in Methods: Determination of toxicity
units for water and sediment. The EPT (Ephemeroptera,
Plecoptera, and Tricoptera) index is the total number of mayfly
þ stonefly þ caddisfly taxa observed at a site. Boxplots depict
the data distributions where the top and bottom represent the
75th and 25th percentiles and the dividing line is the 50th
percentile or the median value. The whiskers extend to the 5th
percentile (bottom) and 95th percentile (top) of the data
distribution. Dots represent outliers beyond the 5th and 95th
percentiles.

FIG. 4. Effect of hydrothermal alteration and mining on
water and sediment toxicity and metal-sensitive aquatic
invertebrate communities. Chi-square statistics are the result
of a Kruskal-Wallis one-way ANOVA by ranks. Different
lowercase letters indicate significant differences based on
Dunn’s multiple-comparison test (P � 0.05). See Fig. 3 for
boxplot descriptions.
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in our study area are located in catchments that were

hydrothermally altered, not all the metals in water and

sediment from streams draining mined catchments are

attributable to the mining process. However, mining

appears to increase metal concentration and the toxicity

of water and sediment to EPT taxa in these catchments.

The effect of hydrothermal alteration on the toxicity

of water and sediment is not the same for all mineral-

deposit types. Water and sediment from catchments that

have unmined polymetallic vein (PMV) deposits were

indistinguishable from lithologic reference catchments,

likely due to carbonate minerals associated with this

type of deposit that can neutralize acids and minimize

the export of metals to aquatic ecosystems (du Bray

1996). In contrast, water and sediment from catchments

containing unmined porphyry deposits were toxic, so

that EPT taxa are essentially absent from these

catchments. As a result, the style and intensity of

hydrothermal alteration and the mineral-deposit type

must be considered when assessing the environmental

state of mined areas.

Locally derived geochemical and biological baselines

can lead to an accurate assessment of the effects of

mining on aquatic ecosystems. For example, in our

study area mined PMV deposits hosted by propylitically

altered rocks resulted in elevated water and sediment

toxicity and a modest reduction of EPT index as

compared to lithologic reference. However, mined QSP

(quartz–sericite–pyrite)-hosted PMV deposits resulted in

an 80% reduction of EPT index. Had we compared the

median EPT index found at lithologic reference sites

(11.8) to that observed at all mined sites (7.8), we would

estimate that mining had caused a 34% decline in EPT

index. However, mined propylitically altered PMV

deposits decreased EPT index by only 6% compared to

that observed at unmined PMV deposits. The use of

unmined catchments with similar geologic characteris-

tics (lithology and alteration) as a potential analog for

pre-mining baselines allowed us to qualitatively distin-

guish between the influence on aquatic ecosystems of

natural geologic processes and mining.

In certain deposit types there is potential for streams

to be misclassified as impaired due to mining if these

geologic processes are not considered in biological

assessments of abandoned-mine lands. A spatially

randomized sampling design used to determine the

number of kilometers of impaired streams found that

67% of the mountain streams in Colorado (USA)

exceeded concentrations thought safe for aquatic life

(Clements et al. 2000); while 1165 km of stream within

our study area are listed as impaired (Clean Water Act

[CWA] section 303(d) list in 2008; see footnote 5). Of the

sample locations we investigated that are listed on the

CWA section 303(d) list, 25% of them were unmined and

influenced by natural sources of metals.

There are uncertainties associated with our methods.

For example, the ASTER/AVIRIS data (Rockwell

2009) used to detect hydrothermal alteration can only

determine the areal extent of alteration in areas that are

not vegetated. The degree to which the vegetated surface

and more importantly the subsurface (where groundwa-

ter systems and soils can be influenced by these

mineralized systems) are affected by hydrothermal

alteration cannot be assessed with these methods. As a

result, there are streams subjected to hydrothermal

alteration and mineral deposits that are not detectable.

FIG. 5. Effect of hydrothermal alteration, mineral-deposit
type, and mining on water and sediment toxicity and metal-
sensitive aquatic invertebrate communities. Chi-square statistics
are the result of a Kruskal-Wallis one-way ANOVA by ranks.
Different lowercase letters indicate significant differences based
on Dunn’s multiple-comparison test (P � 0.05). See Fig. 3 for
boxplot descriptions.
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For example, five sample locations could not be

classified based on mineral-deposit criteria and were

not included in comparisons of mineral-deposit type or

style of alteration. This inability to classify sites is likely

less problematic as compared to our inability to

determine the total extent of hydrothermal alteration

and mineral deposit on the surface and subsurface of

catchments. This latter limitation could explain a

substantial amount of the variance in the sediment and

water chemistry observed within rock type.

The influence of hydrothermal alteration, mineral

deposits, and mining on aquatic ecosystems in the

United States and the world is significant. Over 200 000

abandoned mines are located in the contiguous 48 U.S.

states (there is no count of the number of abandoned

mines globally), one half of which are hard rock mines

like those investigated here (Ferderer 1996). Ludington

et al. (1996) estimated that only half of the extractable

mineral commodities found domestically are exploited,

while estimating that 50% of the unexploited resources

may influence surface ecosystems. Mineral deposits

similar to those studied here can be found all over the

world, with a substantial fraction of the U.S. poly-

metallic vein and porphyry deposits found in Arizona,

Colorado, Montana, Nevada, and New Mexico (USGS

2009, Verplanck et al. 2009). Although many of these

deposits are unmined, future exploitation of these types

of mineral deposits could have implications for the

health of regional ecosystems (Ludington et al. 1996).

Because unmined hydrothermally altered areas are

poorly documented in the literature, a better under-

standing of the spatial distribution and ecological effects

of mineral deposits would greatly increase our ability

to evaluate ecological risks associated with mining

globally.
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