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Abstract

This paper presents the first systematic comparison, using historical and paleoflood data, of moments-based flood frequency

methods. Peak flow estimates were compiled from streamflow-gaging stations with historical and/or paleoflood data at 36 sites

located in the United States, Argentina, United Kingdom and China, covering a diverse range of hydrologic conditions. The

Expected Moments Algorithm (EMA) and the Bulletin 17B historical weighting procedure (B17H) were compared in terms of

goodness of fit using 25 of the data sets. Results from this comparison indicate that EMA is a viable alternative to current B17H

procedures from an operational perspective, and performed equal to or better than B17H for the data analyzed. We demonstrate

satisfactory EMA performance for the remaining 11 sites with multiple thresholds and binomial censoring, which B17H cannot

accommodate. It is shown that the EMA estimator readily incorporates these types of information and the LP-III distribution

provided an adequate fit to the data in most cases. The results shown here are consistent with Monte Carlo simulation studies,

and demonstrate that EMA is preferred overall to B17H. The Bulletin 17B document could be revised to include an option for

EMA as an alternative to the existing historical weighting approach. These results are of practical relevance to hydrologists and

water resources managers for applications in floodplain management, design of hydraulic structures, and risk analysis for dams.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Historical and paleoflood data have been used to

supplement peak flow estimates from existing stream

gage records, and to extend those records in time.

House et al. (2002) present recent developments and

applications in paleoflood hydrology. There has been

increased interest in obtaining and using historical and

paleoflood data in flood frequency analysis (Jarrett

and Tomlinson, 2000; O’Connell et al., 2002).

Recently, a new parameter estimation procedure,

called the Expected Moments Algorithm (EMA)

(Cohn et al., 1997), was proposed as an improved

alternative to the Bulletin 17B historical weighting

procedure (B17H) (IACWD, 1982), and rec-

ommended for use by NRC (1999). These two
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estimators are compared in this paper using at-site

peak discharge, historical and paleoflood data.

This paper presents: (1) a data base of peak flows

from streamflow-gaging station sites with historical

and/or paleoflood data; (2) a data summary of peak

flow characteristics; (3) a comparison of B17H and

EMA at-site estimators in fitting selected data base

samples; and (4) a demonstration of EMA perform-

ance by fitting sites with binomial and multiple

censored data. The focus of the paper is on practical

problems and issues that a practitioner may face. A

data set consisting of historical, paleoflood, and

systematic streamflow records was assembled to

compare the two estimators. The focus was to use

sites with available historical and paleoflood infor-

mation adjacent to streamflow-gaging stations.

Flood frequency analyses were conducted for each

of the 36 data sets. Three calculations were made:

(1) empirical frequency estimates of the observed

floods; (2) a frequency curve utilizing the historical

weighting procedure (B17H) from Bulletin 17B; and

(3) a frequency curve based on the expected

moments (EMA) method. Flood frequency esti-

mation procedures and methods for comparison are

discussed in Section 2. A summary of the

systematic, historical and paleoflood data base

used in the analysis is presented in Section 3.

Limitations of the historical and paleoflood data

base are discussed. Results and discussion are

presented in Section 4. The results obtained as

part of this paper are contrasted with those from

previous Monte Carlo simulation experiments (Cohn

et al., 1997; England, 1998).

The addition of historical and paleoflood data to

frequency analysis is an essential element to obtaining

realistic estimates of extreme flood quantiles (i.e.

greater than a 500-year flood), rather than relying

exclusively on model extrapolations based solely on

gage data. Continuing efforts in paleoflood data

collection (e.g. Baker, 1987; Jarrett, 1991; Enzel

et al., 1993; Jarrett and Tomlinson, 2000; Levish et al.,

2000) aid hydrologists and engineers to better under-

stand the magnitude, occurrence, and distribution of

extreme floods. These data can also help test flood

frequency analysis assumptions, such as homogeneity

and stationarity. In addition, one can investigate

adequacy of distributions for fitting extreme quantiles,

and the possible use of tail modeling procedures.

Several issues surrounding the quality of historical

and paleoflood data in frequency analysis are

discussed by others. Baker et al. (2002) briefly discuss

two major issues: inaccuracies in flood age estimates

and flood discharge reconstruction inaccuracies.

Inaccuracies in age estimates have been reduced by

using detailed soil sampling and radiocarbon tech-

niques (e.g. Levish, 2002). Improved hydraulic

techniques (e.g. Webb and Jarrett, 2002; Denlinger

et al., 2002) and recent flood data interpretation

(Jarrett and England, 2002; Yanosky and Jarrett,

2002) have helped to reduce these uncertainties. For

the data presented in this paper, strict quality checking

for erroneous individual historical/paleoflood dis-

charge estimates was not conducted outside cursory

reviews and discussions with other investigators for

particular data sets. It was assumed that the records

are correct and complete for all floods that exceed a

threshold. Peak discharge estimates and historical and

paleoflood age estimates and information were not

independently verified, aside from cursory reviews.

Historical flood discharge estimates have been shown

to be in error and sometimes unreliable (e.g. Fuller,

1914, p. 569; Jarrett, 1987, 1994). Evidence of large

floods over long time periods, however, such as

historical peaks and/or paleofloods is invaluable and

cannot be ignored as it can significantly extend the

record length for frequency analysis. In certain cases,

historical information consisted of a flood noted as the

highest since some time in the past. No attempt was

made to obtain unpublished historical data for

individual sites, or to compare estimates with other

sites in a region. The primary source for the

systematic, annual peak discharge data was records

from gaging stations published by the US Geological

Survey, UNESCO (1976), and Rodier and Roche

(1984). Historical and paleoflood information was

obtained from journal articles, research reports, other

technical reports, and communication with individ-

uals performing paleoflood and historical flood

research.

2. Estimation and comparison methods

The appropriate way to include historical and

paleoflood data in flood frequency analysis is to

consider that the data arise from a censored sample.

J.F. England Jr. et al. / Journal of Hydrology 278 (2003) 172–196 173



The goal is to include positive evidence of large

floods, or limits on flood magnitude, over longer time

periods to extend peak discharge records from gaging

stations. This concept is illustrated in Fig. 1.

Following notation used by Hirsch and Stedinger

(1987) and Guo and Cunnane (1991), we define a

systematic (gage) record length ðsÞ; a historical/

paleoflood record length ðhÞ; where n ¼ s þ h; and

peak discharge threshold Q0 that represents a censor-

ing level. One knows the number of floods ðe0Þ

(possibly their magnitude as well) in h; and the

number of floods ðeÞ in s that exceed Q0: The number

of floods that exceed the threshold is k; where k ¼

e þ e0; and the total number of floods is g; where g ¼

s þ k 2 e: Estimates of s; h; Q0; e and e0 were made

for each data set based on the available information.

Historical and paleoflood data can also be represented

by binomial censoring, interval censoring and mul-

tiple censoring cases. Binomial-censored data (Ste-

dinger and Cohn, 1986) are defined as the exact

magnitude of a flood is unknown except that it

exceeded a lower threshold. Interval censoring is

utilized when the exact magnitude of a flood is

unknown, but known to be within some upper and

lower amount (Stedinger et al. 1988a; Cohn et al.,

1997). Multiple censoring refers to cases where more

than one peak discharge threshold ðQ0Þ is used to

represent the historical and paleoflood data (e.g.

Levish et al., 1994).

There is currently a lack of consensus in the

hydrology community regarding what is the appro-

priate censored data model, Type I or Type II, for

incorporating historical/paleoflood data in frequency

analysis. In Type I censoring, the threshold Q0 is fixed

and the number of floods exceeding the threshold is a

random variable. For Type II censoring, the number of

floods exceeding Q0 is fixed and Q0 is a random

variable. Previous investigators (e.g. Stedinger and

Cohn, 1986; Hosking and Wallis, 1986a,b; Frances

et al., 1994) made different assumptions about the

type of censored data for simulation experiments,

without presenting data sets to document their

assumptions. Stedinger and Cohn (1986) assumed

Type I censoring and found historical information to

be valuable in virtually all cases considered. Hosking

and Wallis (1986a,b) assumed Type II censored data

Fig. 1. Example peak discharge time series with historical period and discharge threshold Q0: The shaded area represents floods of unknown

magnitude less than Q0:
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and that only the largest flood was observed; their

conclusions were nearly opposite to Stedinger and

Cohn (1986). Stedinger and Baker (1987) explained

that Hosking and Wallis’ results were primarily due to

the fact that they only used the systematic record to

estimate the at-site scale parameter. The greatest

impact of historical/paleoflood information should be

in its ability to improve estimates of the at-site scale

parameter (Stedinger and Baker, 1987). Guo and

Cunnane (1991) indicated that Hosking and Wallis’

results were due primarily to their Type II censoring

assumption, and suggested that a Type II model may

not be the best choice to represent the data. Frances

et al. (1994) showed that historical/paleoflood data are

valuable regardless if one assumes Type I or Type II

censoring.

The log-Pearson Type III distribution (LP-III) was

selected as the base flood frequency distribution to

compare B17H and EMA. Logarithms ðX1;…;XgÞ of

the peak discharges ðQ1;…;QgÞ were fit to a Pearson

Type III (P-III) distribution (IACWD, 1982). The

P-III density function is defined as:

f ðxlt;a;bÞ

¼

x 2 t

b

� �ða21Þ

exp 2
x 2 t

b

� �
lblGðaÞ

x 2 t

b

� �
$ 0

0 otherwise

8>>><
>>>:

ð1Þ

where x is the peak discharge logarithm (random

variable), t; a; b are the location, shape, and scale

parameters of the P-III distribution, and GðaÞ is the

complete gamma function. The P-III distribution

parameters (t; a; b), expressed in terms of the first

three population moments, are:

t ¼ m2 ab ð2Þ

a ¼
4

g2
ð3Þ

b ¼ signðgÞ
s2

a

 !1=2

ð4Þ

where (m; s2; g) are the mean, variance, and

coefficient of skew, respectively. The observed flood

sample is used to estimate (m̂; ŝ2; ĝ) where

the circumflexes (^) indicate that the quantities are

estimates.

2.1. Bulletin 17B historical (B17H) weighting method

The Bulletin 17B historical weighting procedure is

presented in IACWD (1982). The B17H sample mean

ðm̂Þ; sample variance ðŝ2Þ and coefficient of skew ðĝÞ

estimates, neglecting low outliers, are:

m̂ ¼

W
Xs2e

i¼1

Xi þ
Xg

j¼s2eþ1

Xj

n
ð5Þ

ŝ2 ¼

W
Xs2e

i¼1

ðXi 2 m̂Þ2 þ
Xg

j¼s2eþ1

ðXj 2 m̂Þ2

n 2 1
ð6Þ

ĝ ¼

W
Xs2e

i¼1

ðXi 2 m̂Þ3 þ
Xg

j¼s2eþ1

ðXj 2 m̂Þ3

ðn 2 1Þðn 2 2Þŝ3
ð7Þ

where the weighting factor W is defined as:

W ¼
n 2 k

s 2 e
ð8Þ

The weighting factor W is used to represent the

unknown, below-threshold values and that they follow

the same distribution as the below-threshold systema-

tic observations (IACWD, 1982). Essentially the

B17H adjustment ‘fills in’ the historical/paleoflood

period with an appropriate number of replications of

below-threshold ðQ0Þ portion of the gage record

(Kirby, 1981; Thomas, 1985). Two shortcomings of

this adjustment are: (1) the assumption that the gage

record is representative of the entire historical period

less the historical data; and (2) very little weight is

given to the historical data (Lane, 1987). This second

assumption is inappropriate for long historical/paleo-

flood periods in relation to the systematic record. For

example, based on the Elkhead Creek data (site no.

18), s ¼ 41; h ¼ 4959; e ¼ 0 and e0 ¼ 1; the gage

record is weighted 122 times ðW ¼ 121:9Þ to fill in the

4958 unobserved observations. Deficiencies of this

estimator are discussed by Stedinger and Cohn

(1986), Lane (1987), and England (1998). One

needs to have at least one flood with historical

information, and the flood estimate must be explicitly

known for B17H to use the data. B17H cannot readily
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use binomial or interval censored floods, or data with

multiple thresholds (England, 1998).

2.2. Expected Moments Algorithm method

The EMA (Cohn et al., 1997, 2001) is a new

moments-based parameter estimation procedure that

was designed to use the different types of gage,

historical, and paleoflood data in flood frequency

analysis. EMA was designed to handle historical and

paleoflood data that the Bulletin 17B historical

weighting procedure was never designed to use,

such as binomial and interval censored data, and

multiple thresholds. EMA is described in detail by

Cohn et al. (1997, 2001) and England (1998).

The EMA sample mean, variance, and coefficient

of skewness, including historical/paleoflood infor-

mation about unknown flood magnitudes Xh less than

X0; are:

m̂m ¼

Xs2e

i¼1

Xi þ
Xg

j¼s2eþ1

Xj þ ðh 2 e0ÞE½Xh�

n
ð9Þ

The expression E½ � is the expected value of a flood of

unknown magnitude ðXhÞ during the historical period

ðhÞ given that it is below the threshold ðX0Þ: The term

is then weighted by the number of observations ðh 2

e0Þ below X0: The equation for the first expectation of

a P-III distribution is (Cohn et al., 1997):

E½XhlXh # x0; t̂; â; b̂� ¼ t̂þ b̂

G
x0 2 t̂

b̂
; âþ1

 !

G
x0 2 t̂

b̂
; â

 ! ð12Þ

The expectation for higher order moments is:

E½ðXh 2 m̂ÞplXh # x0; t̂; â; b̂�

¼
Xp

j¼0

p

j

0
@

1
Ab̂jðt̂2 m̂Þp2j

G
x0 2 t̂

b̂
; âþ j

 !

G
x0 2 t̂

b̂
; â

 !
2
66664

3
77775

ð13Þ

For binomial/interval censored data and multiple

thresholds, Eq. (13) is generalized for a range ½x0 #

Xh # xu� (Cohn et al., 1997):

E½ðXh 2 m̂Þplx0 #Xh # xu; t̂; â; b̂�

¼
Xp

j¼0

p

j

0
@

1
Ab̂jðt̂2 m̂Þp2j

£

G
xu 2 t̂

b̂
; âþ j

 !
2G

x0 2 t̂

b̂
; âþ j

 !

G
xu 2 t̂

b̂
; â

 !
2G

x0 2 t̂

b̂
; â

 !
2
66664

3
77775 ð14Þ

2.3. Data comparison metrics

Three calculations were made for the single

threshold comparison sites: (1) empirical frequency

(plotting position) estimates of the observed floods;

(2) a frequency curve for ðs þ hÞ using the B17H

historical weighting estimation procedure; and (3) a

frequency curve for ðs þ hÞ based on the EMA

parameter estimation method. In all cases, the log-

Pearson Type III distribution was assumed to provide

an adequate fit to the data. This distribution assump-

tion can influence the results. For the binomial and

ŝ2
m ¼

Xs2e

i¼1

ðXi 2 m̂mÞ
2 þ

Xg

j¼s2eþ1

ðXj 2 m̂mÞ
2

2
4

3
5þ ðh 2 e0ÞE½ðXh 2 m̂mÞ�

2

n
ð10Þ

ĝm ¼

Xs2e

i¼1

ðXi 2 m̂mÞ
3 þ

Xg

j¼s2eþ1

ðXj 2 m̂mÞ
3

2
4

3
5þ ðh 2 e0ÞE½ðXh 2 m̂mÞ

3�

nŝ3
m

ð11Þ
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multiple censoring sites, the same calculations were

made except that the B17H estimation was omitted.

Four data assumptions were made as part of this

study: (1) peak discharge estimates are explicitly

known (no measurement errors are incorporated),

unless data are binomial or interval-censored; (2) the

historical period h is known perfectly so there are no

errors in estimating the historical/ paleoflood record

length; (3) the flood records are approximately

stationary and homogeneous; and (4) all data samples

are from an LP-III parent distribution. While these

four assumptions were made in this study for

simplicity, all may possibly be violated in practice.

Several investigators have questioned these oper-

ational assumptions and suggest that historical and

paleoflood data can be caused by different mechan-

isms (Webb and Betancourt, 1992) and are non-

stationary for these long time periods (Webb and

Baker, 1987; Ely, 1992, 1997). O’Connell et al.

(2002) present a Bayesian framework for incorporat-

ing data and model uncertainties in flood frequency

analysis, but not climate or land use changes. NRC

(1999) recommended using a dynamic flood fre-

quency approach to handle non-stationary data.

Currently, flood frequency methods that incorporate

historical/paleoflood data and include trend or shifts

in climate are under development.

Each estimation method was used to compute a flood

discharge Q̂iðTÞ for each observed flood ðiÞ in each flood

series, where the return period T ¼ ð1=pðiÞÞ: Compari-

sons were made between computed flood discharges

Q̂iðTÞ and data (assumed true) values QiðTÞ for the g

observed floods in each data set. This simple technique

has frequently been used as a basis for comparing two

estimation methods with empirical data sets (e.g.

Benson, 1968; Bobée and Robitaille, 1977; IACWD,

1982; Jain and Singh, 1987).

Two metrics were used to compute the relative

goodness of fit between computed discharges Q̂iðTÞ

and data (true) values QiðTÞ : a mean absolute relative

deviation (ARD) and a mean squared relative

deviation (MSD):

ARD ¼
1

g

Xg

i¼1

lqiðTÞl ð15Þ

MSD ¼
1

g

Xg

i¼1

½qiðTÞ�
2 ð16Þ

and

qiðTÞ ¼
Q̂iðTÞ2 QiðTÞ

QiðTÞ
ð17Þ

The statistics ARD and MSD are objective indices of

the goodness of fit of each method to sample data,

throughout the recurrence intervals of interest for

flood analysis (Bobée and Robitaille, 1977; Jain and

Singh, 1987). Probability plots of the data and the

fitted distributions were also used in a qualitative

sense to assess the relative goodness of fit of each

estimation procedure to the data.

Exceedance probability estimates pðiÞ for the data

values QðiÞ were computed via one of two plotting

pðiÞ ¼

i 2 a

k þ 1 2 2a
ðpeÞ i ¼ 1;…; k

pe þ ð1 2 peÞ
i 2 k 2 a

n þ 1 2 2a
i ¼ k þ 1;…; g

8>><
>>: p̂e ¼

k

n
ð18Þ

pðiÞ ¼

i 2 a

k þ 1 2 2a
ðpeÞ i ¼ 1;…; k

pk þ ð1 2 pkÞ
i 2 k 2 a

n þ 1 2 2a
i ¼ k þ 1;…; g

8>><
>>: pk ¼

ðk 2 aÞ

ðk þ 1 2 2aÞ
ðpeÞ ð19Þ
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positions: (1) a Type I exceedance-based plotting

position Eq. (18) for the Type I and binomial-

censored samples (Hirsch and Stedinger, 1987); and

(2) a Type II plotting position Eq. (19) for the Type

II samples (Salas et al., 2002). Eqs. (18) and (19)

give identical plotting position estimates pðiÞ for the

k largest floods. The expanded Type I formula

(Hirsch and Stedinger, 1987, Appendix C) was used

for the sites with multiple thresholds. To assess the

effects of the plotting position distribution coeffi-

cient alpha ðaÞ on the ARD and MSD results,

calculations were made for three values that span

the possible coefficient range (a ¼ 0:00; 0.4, and

0.5), for the Weibull, Cunnane, and Hazen formulas

(Cunnane, 1978).

Because one is interested in the performance of

the estimation procedure to fit the extreme events

on record as well, three additional comparisons

were made: (1) qiðTÞ for the largest flood was used

as a basis for comparison; (2) an approximate non-

exceedance probability test (Stedinger et al., 1988a)

was used to assess the fit of the distribution to the

largest observed flood ðQmaxÞ; and (3) ARD and

MSD were estimated for only the k largest floods,

as opposed to all g observations. Note that the first

and third comparisons are identical when k ¼ 1:

The non-exceedance probability test is presented in

Stedinger et al. (1988a) and was used by Stedinger

et al. (1988b) to assess whether the fitted distri-

bution is consistent with the observed magnitude of

the largest flood for the period of record ðnÞ (see

also Conover, 1999, p. 145). Stedinger et al.

(1988a) define the test statistic pp as:

pp ¼ Prob½Xi , Xmax; i ¼ 1;…; n� ¼ F½Xmaxlâ; b̂; t̂�n

ð20Þ

In this case, the parameters are for a P-III

distribution and X ¼ logeðQÞ: The null hypothesis

for this test is that the fitted LP-III distribution

quantile is consistent with the largest flood

observation ðQmaxÞ in n years. The alternative

hypothesis is the fitted distribution is inconsistent

with the largest flood. The estimated value of pp

from the fitted distribution should fall in the

interval (0.05, 0.95) with an approximate 90%

probability.

3. Data utilized for comparison

A data base consisting of 36 at-site gaging station

peak discharge estimate records where historical

and/or paleoflood data were available was assembled.

The stations represent different hydrologic conditions

and climatic regions in the United States, Argentina,

the United Kingdom, and China. The sites are located

in the following states or countries, with number of

sites at each location in parentheses: Alabama (1),

Arizona (5), California (4), Colorado (10), Georgia

(1), Iowa (1), Maryland (1), Pennsylvania (1),

Tennessee (1), Texas (1), Utah (2), Virginia (2),

Washington (1), West Virginia (1), Argentina (1)

China (1), and United Kingdom (2). The majority of

the sites are located in the United States. The gaging

stations are located in diverse hydrologic regimes that

range from humid to semi-arid, with drainage areas

ranging from 65 to 1,950,000 km2. Records include

floods caused by rainfall from major synoptic-scale

disturbances, tropical storms, and high intensity, local

convective storms. Each station is numbered and

listed by location in Table 1; systematic and historic

record lengths and the sources of information used for

each site are also included. Time series plots of the

data at each site are shown in England (1998).

One main criterion used to select sites was the

length of the historical or paleoflood period h: The

record lengths for the 36 data sets span from 100 to

10,000 years (Fig. 2); note that a variable class width

is used to represent the distribution. There is roughly

equal representation of sites with record lengths less

than and greater than 500 years. Many additional sites

exist in the United States where historical flood data in

the 100 to 200-year range are available (e.g. Thomson

et al., 1964). Although 18 out of 36 sites that were

obtained have record lengths greater than 500 years,

we were unable to rapidly obtain published data at

other locations to supplement these sites.

One limiting factor in this study was the number of

sites with paleoflood information. Systematic efforts,

methods and protocols on a national (US) or

international scale do not exist for the collection,

archival and retrieval of historical and paleoflood

peak discharge data. Historical and paleoflood data

generally are not readily available or easily accessible

in a convenient form for the practitioner to use, as

compared to a large, systematic streamflow record
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Table 1

Streamflow gaging station sites with historical and/or paleoflood data

Site no. Location and historical/paleoflood data references Drainage

area (km2)

Systematic record Historical/paleoflood

record

Years s Years AD

(BP as noted)

h

1 James River at Richmond, Virginia USGS Gage No. 02037500;

Williams and Guy (1973)

17,503 1935–1993 59 1607–1935 328

2 Passage Creek near Buckton, Virginia USGS Gage No.

01635500; Hupp (1987, 1988)

227 1933–1993 61 1720–1933 213

3 Western Run at Western Run, Maryland USGS Gage No.

01583500; Costa (1974, 1978a)

155 1945–1993 49 2100 BP–1945 2051

4 Shenandoah River at Milleville, West Virginia USGS Gage No.

01636500; Fuertsch (1992), Fanok and Wohl (1997)

7874 1896–1993 77 1740–1896 177

5 Susquehanna River at Harrisburg, Pennsylvania USGS Gage

No. 01570500; Murphy (1905), Benson (1950)

62,419 1891–1993 103 1780–1891 111

6 Savannah River at Augusta, Georgia USGS Gage No.

02197000; Sanders et al. (1990)

19,446 1876–1951 76 1720–1876 156

7 Big Sandy River at Bruceton, Tennessee USGS Gage No.

03606500; IACWD (1982)

531 1930–1987 58 1860–1930 70

8 Alabama River near Montgomery, Alabama USGS Gage No.

02420000; Pearman et al. (1991)

39,075 1928–1993 66 1800–1928 128

9 Floyd River at James, Iowa USGS Gage No. 06600500;

IACWD (1982), USGS (1959)

2295 1935–1993 59 1850–1935 85

10 Pecos River near Langtry, Texas USGS Gage Nos. 08447400,

08446500; Kochel et al. (1982), Baker et al. (1983), Lane (1987)

91,069 1900–1982 83 4450 BP–1900 4367

11 North Fork Cache La Poudre River near Livermore, Colorado

USGS Gage No. 06751500; England (1998)

1469 1929–1931,

1947–1965, 1976

23 1850–1947 109

12 Cache La Poudre River at mouth of canyon near Fort Collins,

Colorado USGS Gage No. 06752000; England (1998)

2735 1883–1993 110 1850–1883 34

13 Big Thompson River at mouth of canyon near Drake, Colorado

USGS Gage No. 06378000; Costa (1978a,b), Jarrett and Costa

(1988)

790 1888–1993 70 5000 BP–1888 4930

14 Clear Creek near Golden, Colorado USGS Gage No. 06719500;

Baker (1974)

1036 1911–1974 64 6000 BP–1911 5936

15 First Creek below Buckley Road near Rocky Mountain Arsenal,

Colorado USGS Gage No. 06720460; Capesius (1996)

65 1982–1993 11 1893–1982 89

16 Bear Creek at Morrison, Colorado USGS Gage No. 06710500;

Grimm (1993), Grimm et al. (1995)

425 1896–1993 83 8500 BP–1896 8417

17 Muddy Creek at Kremmling, Colorado USGS Gage No.

09041500; Jarrett (1996)

751 1982–1994 12 5000 BP–1982 4988

18 Elkhead Creek near Elkhead, Colorado USGS Gage No.

09245000; Jarrett and Tomlinson (2000)

166 1953–1993 41 5000 BP–1953 4959

19 Animas River at Howardsville, Colorado USGS Gage No.

09357500; Pruess (1996)

145 1936–1982 47 1000 BP–1936 953

20 Junction Creek near Durango, Colorado USGS Gage No.

09361400; Pruess (1996)

68 1960–1965,

1980–1993

19 1000 BP–1960 981

21 S. Fork Ogden River near Huntsville, Utah USGS Gage No.

10137500; Ostenaa and Levish (1995), Ostenaa et al. (1997)

355 1921–1994 74 2500 BP–1921 2425

22 Escalante River near Escalante, Utah USGS Gage No.

09337500; Enzel et al. (1993), Webb and Baker (1987), Webb

et al. (1988)

829 1943–1955,

1972–1993

42 2100 BP–1910 2058

23 Virgin River at Littlefield, Arizona USGS Gage No. 09508500;

Enzel et al. (1994)

13,183 1930–1993 63 1250 BP–1930 1437

(continued on next page)

J.F. England Jr. et al. / Journal of Hydrology 278 (2003) 172–196 179



data base (e.g. Slack and Landwehr, 1993). So far as

the current authors are aware, there are no programs in

place to systematically document collection methods

and data quality assurance/control. Current activities

in the United States should improve this situation. A

global paleoflood databank is currently being devel-

oped at the Laboratory of Tree Ring Research

(LTRR), Arizona in cooperation with the Bureau of

Reclamation, and will eventually be archived at the

National Geophysical Data Center’s (NGDC) World

Data Center for broad scientific use (Hirschboeck,

1999). Ongoing paleoflood data collection efforts by

Reclamation (e.g. Ostenaa et al. 1996, 1997; Levish

et al., 2000) will enhance the databank.

Data compiled as part of this study show that both

Type I and Type II censoring assumptions may apply. A

physical criterion (e.g. bridge or building markers,

terraces, etc.) was used to select the Type I model and

differentiate from Type II cases. Type II sites were

selected based on the largest flood criterion, where the

information indicates that the largest flood since some

time has occurred, without relation to some fixed

threshold. For the data sets obtained, there are 13 Type I

sitesand12TypeIIsites. Inaddition,multiplecensoring

(more than one threshold) and binomial-censored data

(StedingerandCohn,1986)areobservedatnineandtwo

sites, respectively. Both Type I and II censoring

assumptions may be needed when multiple thresholds

Table 1 (continued)

Site no. Location and historical/paleoflood data references Drainage

area (km2)

Systematic record Historical/paleoflood

record

Years s Years AD

(BP as noted)

h

24 Colorado River at Lee’s Ferry, Arizona USGS Gage No.

09380000; Enzel et al. (1993), Smith et al. (1995)

289,561 1884–1963 42 4000 BP–1884 3958

25 Salt River near Roosevelt, Arizona USGS Gage No. 09482500;

Partridge and Baker (1987), Baker et al. (1987), Stedinger et al.

(1988b)

11,152 1924–1993 69 2000 BP–1924 1931

26 Verde River below Tangle Creek above Horseshoe Dam,

Arizona USGS Gage No. 09508500; Baker et al. (1987),

Stedinger et al. (1988b), House et al. (1995)

15,172 1925–1993 69 2000 BP–1925 1931

27 Santa Cruz River at Tucson, Arizona USGS Gage No.

09482500; Webb and Betancourt (1992), Smith et al. (1995)

5755 1915–1993 78 1850–1915 66

28 Santa Ana River near Riverside Narrows, California USGS

Gage No. 11066500; Beattie and Beattie (1939), Sidler (1968)

2214 1928–1973 45 1860–1928 69

29 Santa Ynez River at Bradbury Dam Site Santa Barbara County,

California USGS Gage No. 11126000; Levish et al. (1994),

Ostenaa et al. (1996)

1093 1907–1993 85 2920 BP–1907 2835

30 Trinity River above Coffee Creek near Trinity Center,

California USGS Gage No. 11523200; Helley and LaMarche

(1973)

386 1956–1994 37 1500–1956 463

31 Coffee Creek near Trinity Center, California USGS Gage No.

11523700; Stewart and LaMarche (1967)

308 1958–1966 9 1200–1958 791

32 Skagit River near Concrete, Washington USGS Gage No.

12194000; Stewart and Bodhaine (1961)

7089 1925–1994 69 1800–1925 125

33 Parana River at Corrientes, Argentina; Salas et al. (2002) 1,949,743 1904–1989 86 1800–1904 104

34 Trent River at Trent Bridge, United Kingdom; UNESCO (1976) 7511 1915–1969 52 1700–1915 218

35 Thames River at Teddington, United Kingdom; UNESCO

(1976)

9661 1884–1971 88 1700–1884 184

36 Changjiang (Yangtze River) at Yichang, Hubei, China; Rodier

and Roche (1984)

1,010,095 1877–1976 91 1100–1877 786
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are present, as documented by Stedinger et al. (1988b)

for the Salt and Verde Rivers. In practice, the censoring

assumption, discharge threshold level, and historical

periodareestimatedbasedontheavailable information.

The issues in practice are really to identify the threshold

level(s) Q0; number of flood exceedances k and if the

magnitude of Q0 is nearly equal to or substantially less

than the kth largest flood, rather than identifying the

censoring type.

In addition to censoring type, there has been

controversy regarding the number of historical floods

or paleofloods that equal or exceed a discharge

threshold. Typically, for a Type I censored data

model the number of threshold exceedance floods ðkÞ

is a function of the return period of the threshold and

the length of record ðnÞ; whereas k is fixed in advance

for a Type II model. Previous researchers (e.g.

Hosking and Wallis’ (1986a,b) model), who have

assumed only the largest flood was recorded in a

historical period, have not adequately represented the

potential information available. For the 27 sites with a

single threshold compiled as part of this investigation

(Table 2), two or more historical and/or paleofloods

had exceeded the discharge threshold at 16 sites. For

the 12 locations with Type II censoring, more than one

exceedance flood ðk . 1Þ was observed at two of

these sites. As noted above, both censored data

models, cases with multiple thresholds (nine sites)

and binomial censored data (two sites) need to be

considered. In general, however, it is difficult to infer

the censoring type and discharge threshold when one

knows only that a single large flood has occurred. In

many practical situations Q0 is assumed equal to the

largest flood, without any additional information to

indicate otherwise.

The pertinent peak discharge data characteristics

are summarized in Tables 2 and 3 for single threshold

sites (including binomial censoring) and multiple

threshold sites, respectively. Two simple ratios,

shown in Tables 2 and 3, were estimated to provide a

rough empirical measure of the historical/paleoflood

information content. The threshold ratio is defined as

the ratio of the largest observed flood ðQmaxÞ to the

discharge threshold ðQ0Þ: A similar concept was first

expressed by Potter and Walker (1985) to describe the

uncertainty in measured versus observed systematic

discharge values. Matthai (1990) noted that the

magnitudes of the largest Holocene flood peak

discharge estimates on two rivers in Arizona were

not much greater than two times the largest systematic

flood peaks. The historical ratio is defined herein as the

ratio of the historical record length ðhÞ to the systematic

Fig. 2. Distribution of the total record length ðnÞ for the 36 sites.
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record ðsÞ:Frances et al. (1994) suggested that this ratio

(their r) was one factor that described the statistical

gain of Type I censored samples. As the historical ratio

increases, the historical and paleoflood data provide

more information about extreme floods and as a basis

for extrapolation.

Flood frequency analyses were conducted for each

of the 36 data sets as a practical way to compare B17H

and EMA estimation procedures. The data were placed

in three groups: (1) single threshold sites, either Type I

or Type II censoring, where the discharge estimates

were approximately known (Table 2, 25 sites); (2)

binomial-censored data sets (Table 2, two sites); and

(3) multiple-censored data locations (Table 3, nine

sites). The first group was used as the major basis for

the comparison. The B17H procedure can incorporate

only a single threshold, and is unable to utilize

binomial or multiple censored data. Data from the

second two groups were utilized to demonstrate EMA

performance in these practical situations.

4. Results and discussion

The single threshold EMA-B17H comparison

results (Type I and Type II data) are presented and

Table 2

Streamflow data summary, single threshold sites

Site no. Site name Years Ratio h=s Discharge threshold No.

floods

k . Q0

Max. observed

discharge (m3/s)

Ratio Qmax=Q0

s h Q0 (m3/s) Ret. Per. T e e0 Qh Qs

Type I censoring (13 sites)

5 Susquehanna River 103 111 1.1 10,870 9 17 6 18,500 28,883 2.66

7 Big Sandy River 58 70 1.4 510 46 0 3 708 481 1.39

8 Alabama River 66 128 1.9 7930 65 1 2 9120 8014 1.15

11 N. Fork Poudre River 23 109 5.1 184 100 2 2 241 268 1.46

12 Cache La Poudre River 110 34 0.3 283 100 3 1 340 340 1.20

15 First Creek 11 89 8.1 28.32 33 0 3 99.1 8.69 3.50

16 Bear Creek 83 8417 101.4 105 2100 3 1 146 146 1.39

28 Santa Ana River 45 69 1.5 9030 114 0 1 9060 2832 1.00

30 Trinity River 37 463 12.5 589 250 2 0 – 750 1.27

32 Skagit River 69 125 1.8 5660 32 0 6 14,160 4361 2.50

33 Parana River 86 104 1.2 50,000 38 2 3 60,200 60,215 1.20

34 Trent River 52 218 4.2 1100 67 1 3 1420 1110 1.29

36 Yangtze River 91 786 8.6 80,000 110 0 8 110,000 71,100 1.38

Type II censoring (12 sites)

1 James River 59 328 5.6 6170 129 3 0 – 6286 1.02

3 Western Run 49 2051 41.9 1076 2100 1 0 – 1076 1.00

6 Savannah River 76 156 2.0 4530 14 11 5 7930 9910 2.19

9 Floyd River 59 85 1.4 2030 144 1 0 – 2025 1.00

13 Big Thompson R. 70 4930 70.4 883 5000 1 0 – 883 1.00

14 Clear Creek 64 5936 92.8 1420 6000 0 1 1420 167 1.00

17 Muddy Creek 12 4988 415.7 142 5000 0 1 142 47.3 1.00

18 Elkhead Creek 41 4959 121.0 142 5000 0 1 142 80.7 1.00

19 Animas River 47 953 20.3 69.9 1000 0 1 69.9 56.1 1.00

20 Junction Creek 19 981 51.6 86.9 1000 0 1 86.9 17.0 1.00

27 Santa Cruz River 78 66 0.9 1490 144 1 0 – 1492 1.00

31 Coffee Creek 9 791 87.9 501 800 1 0 – 501 1.00

Binomial censoring (two sites)

2 Passage Creek 61 213 3.5 155.7 15 6 12 651.3 594.7 4.18

35 Thames River 88 184 2.1 1048 54 1 4 1060 1060 1.01
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discussed in Section 4.1. Binomial and multiple

censoring results for EMA are discussed in Section

4.2. Probability plots of the data and LP-III distri-

butions using each estimation procedure for the 13

Type I and 12 Type II censored data sets are shown in

England (1998). Plots for selected data sets are shown

in Section 4.1. In each plot, a filled square symbol is

used to plot the k (threshold exceedance) flood

observations at each site; an open triangle is used to

plot the ðg–kÞ below threshold observations.

LogNormal probability paper was chosen to graphi-

cally display the observed data and fitted distributions

for three reasons: (1) this paper is the traditional

choice to graphically display the empirical cumulative

distribution of flood data; (2) the paper uses distorted

axes to present a curve that may appear approximately

linear; and (3) one may observe whether the data can

readily be fit by some standard probability distri-

butions. There is a considerable amount of distortion

in this type of graph paper and the hydrologist should

Table 3

Streamflow data summary, multiple threshold locations (nine sites)

Site no. Site name (number of censoring

thresholds)

Years Ratio hj=s Discharge threshold No.

floods

kj .

Q0

Max. observed

discharge

(m3/s)

Ratio Qmax=Qoj

s hj Qoj (m3/s) Ret. Per. T e e0 Qh Qs

4 Shenandoah River (2 thresholds) 77 129 1.7 2350 12 12 9 4900 6500 2.78

48 0.6 1150 4 17 3 – 2150 1.87

10 Pecos River (6 thresholds) 83 1890 22.7 11,330 1100 2 2 11,300 26,800 2.37

260 3.1 10,760 776 0 1 10,800 16,300 1.52

990 11.9 8500 289 0 5 8500 – 1.00

280 3.4 6800 201 0 2 6800 – 1.00

650 7.8 6090 113 0 4 6100 – 1.00

300 3.6 5100 52 0 4 5100 – 1.00

21 S. Fork Ogden River (3 thresholds) 74 2025 27.0 115 .2020 0 0 – – 0.00

400 5.3 70 .400 0 0 – – 0.00

27 0.4 40 11 7 0 – 53 1.33

22 Escalante River (2 thresholds) 42 1980 47.2 699 2100 0 1 725 600 1.04

76 1.8 501 29 4 0 – 600 1.20

23 Virgin River (4 thresholds) 63 1070 16.9 1600 750 0 2 1750 – 1.09

100 1.6 1250 276 0 1 1400 – 1.12

200 3.2 1100 80 0 3 1100 – 1.00

72 1.1 600 13 3 6 850 997 1.42

24 Colorado River (3 thresholds) 42 3890 92.6 13,610 4000 0 1 13,900 – 1.02

50 1.2 7930 109 0 1 8500 – 1.07

20 0.5 6230 40 1 0 – 6230 1.00

25 Salt River (3 thresholds) 69 1400 20.3 4100 2000 0 1 4100 – 1.00

477 6.9 3000 95 4 2 3500 4050 1.35

54 0.8 1980 12 6 3 – 2950 1.49

26 Verde River (3 thresholds) 69 1000 14.5 5000 2000 0 1 5200 – 1.04

894 13.0 3650 400 2 0 4100 4100 1.12

37 0.5 1950 11 5 4 2720 2830 1.45

29 Santa Ynez River (3 thresholds) 85 2090 24.6 2550 .2900 0 0 – – 0.00

700 8.2 1980 830 1 0 – 2300 1.16

45 0.5 1270 31 4 0 – 1560 1.22
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resist the false security that it may convey (Cudworth,

1989, p. 194). The paper gives more weight to the

median (0.5) probability values and severely distorts

the upper and lower tails of the data and fitted

distributions.

4.1. Single threshold

The results of the EMA-B17H average relative

deviation (ARD) comparison for the 25 sites are

presented in Table 4 for both the Type I and Type II

sites. In this case, the plotting position coefficient a

was assumed to be equal to 0.4. The number of

observed floods ðgÞ and number of threshold excee-

dance floods ðkÞ are listed for each location. The

estimation method that corresponds to the lower value

for ARD is considered best.

For the 13 Type I censored data sites considered

here, the results in Table 4 indicate that EMA and

B17H perform about equally well to fit the g observed

floods. Strictly speaking, B17H fit 7 of 13 sites best

using the ARDðgÞ criterion, and EMA fit six of 13

sites best. However, the absolute difference between

the ARD results for the two estimators for these sites

is practically negligible. Overall, EMA provided a

slightly better fit than B17H as shown by the ARD

sums for all Type I sites (Table 4). Minimal

differences between the EMA and B17H frequency

curves for the g flood observations were seen for most

sites (England, 1998).

Table 4

Average relative deviation (ARD) results for the 25 comparison sites (plotting position a ¼ 0:4)

Site name No. observed floods ðgÞ Floods $ Q0ðkÞ ARD ðgÞ ARD (k floods) ARD ðQmaxÞ

EMA B17H EMA B17H EMA B17H

Type I censoring (13 sites)

Susquehanna River 109 23 0.0321 0.0299 0.0406 0.0459 0.1855 0.2173

Big Sandy River 61 3 0.0360 0.0366 0.0368 0.0515 0.0764 0.0960

Alabama River 68 3 0.0410 0.0399 0.0421 0.0474 0.0577 0.0695

N. Fork Poudre R. 25 4 0.1650 0.1537 0.1922 0.1890 0.4766 0.2610

Cache La Poudre R. 111 4 0.0277 0.0279 0.1271 0.1314 0.1708 0.1500

First Creek 14 3 0.1775 0.1833 0.1423 0.2410 0.1474 0.2881

Bear Creek 84 4 0.1067 0.2011 0.0984 2.879 0.1394 4.079

Santa Ana River 46 1 0.1480 0.1468 0.0081 0.1769 0.0081 0.1769

Trinity River 37 2 0.0928 0.0944 0.0664 0.0660 0.0862 0.1261

Skagit River 75 6 0.0347 0.0331 0.0640 0.1012 0.1601 0.2185

Parana River 89 5 0.0142 0.0127 0.0408 0.0524 0.0517 0.0206

Trent River 55 4 0.0233 0.0243 0.0224 0.0268 0.0225 0.0436

Yangtze River 99 8 0.0322 0.0270 0.0527 0.1345 0.0947 0.2158

ARD Sum for 13 Type I sites 0.9312 1.011 0.9339 4.143 1.677 5.962

Type II censoring (12 sites)

James River 59 3 0.0556 0.0564 0.0908 0.1086 0.0972 0.0413

Western Run 49 1 0.0703 0.0692 0.0528 0.4098 0.0528 0.4098

Savannah River 81 16 0.0693 0.0467 0.0895 0.0898 0.1379 0.0433

Floyd River 59 1 0.0796 0.0751 0.1804 0.3500 0.1804 0.3500

Big Thompson R. 70 1 0.0644 0.0590 0.1998 0.4200 0.1998 0.4200

Clear Creek 65 1 0.0751 0.0650 0.0735 0.6270 0.0735 0.6270

Muddy Creek 13 1 0.0669 0.0762 0.1173 0.3326 0.1173 0.3326

Elkhead Creek 42 1 0.0580 0.0485 0.0383 0.2576 0.0383 0.2576

Animas River 48 1 0.0296 0.0302 0.0581 0.1103 0.0581 0.1103

Junction Creek 20 1 0.1194 0.0836 0.0575 0.6461 0.0575 0.6461

Santa Cruz River 78 1 0.0674 0.0664 0.0507 0.1123 0.0507 0.1123

Coffee Creek 9 1 0.0941 0.0940 0.1928 0.5126 0.1928 0.5126

ARD Sum for 12 Type II sites 0.8497 0.7703 1.2015 3.9767 1.2563 3.8629

Note: sites where k ¼ 1 ARD ðQmaxÞ equals ARD (k floods).
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When one examines the Type I above-threshold

floods (k and Qmax), EMA does a better job at

predicting the largest floods, 11 out of 13 sites using

the k observations and 10 out of 13 sites using the

Qmax observation (Table 4). B17H appeared to

perform marginally better than EMA for the North

Fork Poudre and Parana River sites when one uses the

ARD (g; k; and Qmax) numerical criteria. However,

probability plots for these two sites (not shown)

indicate that the performance of the estimators is

nearly indistinguishable and most likely the differ-

ences are well within data sampling variability. In

contrast, B17H performs poorly as compared to EMA

for several sites where the historical/paleoflood period

is long, especially for Bear Creek (Fig. 3), and

substantially overestimates the largest floods. This

finding is similar to the Monte Carlo simulation

results reported by England (1998) for Type I

censored samples and long record lengths.

The EMA-B17H comparison for Type II censored

samples indicated somewhat similar results as for

Type I samples. It appears that B17H does a

marginally better job at fitting the g observed floods

(nine out of 12 sites) as indicated in Table 4; but again

the differences between the methods are practically

negligible. B17H showed a slight advantage when the

ARDðgÞ results were summed for the Type II sites, but

performed worse than EMA for the large floods

(Table 4). Based on the results shown in Table 4, the

largest difference between the two estimators, where

B17H performed better than EMA, was observed for

the Savannah River site. However, the EMA estimator

over-predicted the largest flood by about 13 percent,

which is typically within measurement error for the

largest floods. The two estimated curves are very

similar in shape and both provide a reasonable fit to

the data (Fig. 4).

The EMA estimator performed particularly well in

fitting the largest observed floods ðQmaxÞ at all 11 sites

where k ¼ 1; as compared to the B17H estimator. This

finding is consistent with the simulation results

presented by England (1998). The practical differ-

ences between B17H and EMA for Type II samples

are illustrated by an example. For the Western Run

Fig. 3. Bear Creek flood frequency plot (Type I censoring, site 16).
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data, the estimation procedure results were nearly

identical for the g observations, with B17H perform-

ing slightly better than EMA; frequency curves for

this site are shown in Fig. 5. However, B17H

underestimated the maximum peak at Western Run

by over 40 percent (Table 4), which is the opposite

situation from Bear Creek (Fig. 3).

Three Type II data sets have particularly short peak

discharge gage records (less than or equal to 20

years): Muddy Creek, Junction Creek, and Coffee

Creek. For these sites, estimation of flood exceedance

probabilities, for return periods greater than 40 years

(about twice the record length), is highly problematic.

The addition of the largest flood known in some long

time period can substantially improve extreme flood

probability estimates. The B17H estimator for these

three data sets underutilizes the largest flood infor-

mation because it represents a time period longer than

500 years, and underestimates the largest flood

magnitude by 33–64 percent (Table 4). These

practical results agree with Type II Monte Carlo

simulation results (England, 1998).

One interesting result is that EMA does not appear to

provide a good fit to the entire range of flood

observations, and over-predicts flood magnitudes in

the 10–5 percent exceedance range, for the three short

records mentioned above and for Clear Creek (site 14).

However, B17H ignores the largest floods. EMA pays

more attention to the largest flood, fits it well, and

appears to provide more accurate peak discharge

estimates for rare exceedance probabilities, for these

sites. One plausible explanation for this supposed lack

of fit for certain ranges of the probability distribution is

data from mixed populations (e.g. Jarrett and Tomlin-

son, 2000). The probability plots show that the largest

flood is inconsistent or does not follow the general trend

of the data and may indicate floods from different

mechanisms. One alternate possibility is that

uncertainties in paleoflood discharge and date

estimation have not been taken into account, or that

the estimates are of poor quality. Other potential factors

include short streamflow records, inaccurate maximum

discharge estimates and/or flood dating errors, different

flood parent distributions (i.e. the data are not LP-III),

Fig. 4. Savannah River flood frequency plot (Type II censoring, site 6).
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non-stationary data, and low outliers. Further work is

needed to assess the possible impact of these factors on

making extreme flood probability statements.

The second numerical criterion used to compare

the fit of the distributions was the mean squared

relative deviation (MSD). Similar results to the ARD

comparison were obtained for the MSD metric

(Table 5) for the 25 data sets, but the differences

were accentuated. EMA performed slightly better

overall than B17H for the 13 Type I sites using the

MSDðgÞ; MSDðk floodsÞ and MSDðQmaxÞ criteria. The

differences between the estimators for the Type I sites

were small except for the Bear Creek site, where

EMA performed superior than B17H. For the Type I

MSDðgÞ criterion at 13 sites, B17H fit five sites best,

EMA fit four sites best, and the estimators were equal

for the remaining four sites. The MSDðk floodsÞ

criterion indicated EMA fit best at 12 out of 13 sites.

As in the ARD comparison, the estimators performed

about the same for the 12 Type II sites using the

MSDðgÞ criterion. EMA performed better at all 12

Type II sites for the MSDðk floodsÞ criterion. Overall,

EMA performs better than B17H for fitting the largest

floods based on the MSD results.

The Weibull and Hazen plotting position par-

ameter values (a ¼ 0:0 and 0.5, respectively) were

used to estimate different pðiÞ values for each data set

to determine the effects of a plotting position on the

ARD and MSD results presented in Tables 4 and 5.

Although not shown, it was found that the choice of a

had a minimal effect on the results when the 13 Type I

and 12 Type II data sets were each considered as a

group. Recall that the Type I or Type II exceedance-

based plotting position estimate of the largest flood

ðQmaxÞ; for samples where k ¼ 1; is independent of a

and the sample censoring type. For the 11 data sets

where k ¼ 1 (Table 4), the a change had some effect

on the ARDðgÞ and MSDðgÞ estimates, but not on

ARDðQmaxÞ and MSDðQmaxÞ:

The descriptive ability of the method to match the

extreme flood of record ðQmaxÞ and the above-threshold

floods is of interest, in addition to matching the range of

quantiles as discussed above. Benson (1968, p. 904)

suggested that future work be conducted to handle

Fig. 5. Western Run flood frequency plot (Type II censoring, site 3).
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‘outliers’ or rare floods, and cautioned that “in any

case, any major modifications… would have to meet

the test of conforming to the data satisfactorily.”

Similarly, the NRC recommended focusing on the

extreme tails of the probability distribution as one of

three ways to better estimate probabilities of extreme

floods (NRC, 1988). The relative deviations for the

return period of the largest flood qiðQmaxÞ and for the k

threshold exceedance floods for each of the 25

comparison data sets are shown in Tables 4 and 5.

The results indicate that the EMA estimator is superior,

as compared to B17H, for the most extreme (largest

magnitude) observations. These practical findings

match Monte Carlo simulation results (England,

1998).

In addition to the qiðQmaxÞ comparison, a non-

exceedance probability test was used to roughly

indicate whether the LP-III fitted distribution is

consistent with Qmax for the period n: The non-

exceedance probability plot test results for the 25

comparison sites are shown in Table 6. EMA appears

to provide a suitable fit to the largest flood for all 25

sites. On the other hand, the results indicate that an

LP-III distribution with parameters estimated by the

B17H method does not adequately describe the largest

flood at eight sites (denoted in italics). One may

confirm these results by examining the probability

plots. In one case (Bear Creek), B17H severely over-

estimates the largest flood exceedance probability;

one infers that the flood has a smaller return period.

Table 5

Mean squared relative deviation (MSD) results for the 25 comparison sites (plotting position a ¼ 0:4)

Site name No. observed

floods ðgÞ

Floods $ Q0ðkÞ MSD ðgÞ MSD (k floods) MSD ðQmaxÞ

EMA B17H EMA B17H EMA B17H

Type I censoring (13 sites)

Susquehanna River 109 23 0.0018 0.0017 0.0031 0.0040 0.0344 0.0472

Big Sandy River 61 3 0.0021 0.0021 0.0021 0.0036 0.0058 0.0092

Alabama River 68 3 0.0032 0.0032 0.0025 0.0033 0.0033 0.0048

N. Fork Poudre R. 25 4 0.0439 0.0334 0.0643 0.0420 0.2272 0.0681

Cache La Poudre R. 111 4 0.0017 0.0016 0.0182 0.0187 0.0292 0.0225

First Creek 14 3 0.0401 0.0458 0.0212 0.0710 0.0217 0.0830

Bear Creek 84 4 0.0229 0.4287 0.0116 8.8060 0.0194 16.6340

Santa Ana River 46 1 0.0388 0.0335 0.0001 0.0313 0.0001 0.0313

Trinity River 37 2 0.0173 0.0181 0.0048 0.0080 0.0074 0.0159

Skagit River 75 6 0.0029 0.0028 0.0067 0.0140 0.0256 0.0477

Parana River 89 5 0.0004 0.0004 0.0021 0.0034 0.0027 0.0004

Trent River 55 4 0.0009 0.0009 0.0006 0.0010 0.0005 0.0019

Yangtze River 99 8 0.0016 0.0021 0.0038 0.0206 0.0090 0.0466

MSD Sum for 13 Type I sites 0.1776 0.5743 0.1411 9.0269 0.3863 17.0126

Type II censoring (12 sites)

James River 59 3 0.0046 0.0050 0.0088 0.0148 0.0094 0.0017

Western Run 49 1 0.0123 0.0105 0.0028 0.1679 0.0028 0.1679

Savannah River 81 16 0.0063 0.0037 0.0088 0.0093 0.0190 0.0019

Floyd River 59 1 0.0193 0.0131 0.0326 0.1225 0.0326 0.1225

Big Thompson R. 70 1 0.0074 0.0086 0.0399 0.1764 0.0399 0.1764

Clear Creek 65 1 0.0173 0.0114 0.0054 0.3932 0.0054 0.3932

Muddy Creek 13 1 0.0085 0.0142 0.0138 0.1106 0.0138 0.1106

Elkhead Creek 42 1 0.0052 0.0048 0.0015 0.0664 0.0015 0.0664

Animas River 48 1 0.0013 0.0014 0.0034 0.0122 0.0034 0.0122

Junction Creek 20 1 0.0376 0.0284 0.0033 0.4174 0.0033 0.4174

Santa Cruz River 78 1 0.0080 0.0072 0.0026 0.0126 0.0026 0.0126

Coffee Creek 9 1 0.0135 0.0334 0.0372 0.2628 0.0372 0.2628

MSD Sum for 12 Type II sites 0.1413 0.1417 0.1601 1.7661 0.1709 1.7456

Note: sites where k ¼ 1 MSD ðQmaxÞ equals MSD (k floods).
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For the other seven cases, B17H underestimates the

flood hazard at rare exceedance probabilities.

EMA performed equally as well or slightly better

overall than B17H for the 25 data sets, based on three

numerical metrics (ARD, MSD and pp) and one

qualitative criterion (probability plots) considered.

Based on the data and comparison presented in this

study, EMA performs comparably to the existing

B17H approach for the range of quantiles and

distribution considered, and provides a better fit to

the largest observed floods. Several factors that could

have a small impact on the results presented here were

not investigated. The effects of the distribution (LP-III)

assumption were not considered here; however, based

on probability plots (not shown), the distribution

choice appears to be adequate (England, 1998). For

ease of comparison and simplicity, regional coeffi-

cients of skew and low outlier adjustments were not

considered here.

Thomas (1985) raised concerns about potential

computational disadvantages with alternative

approaches such as censoring theory, and that they

must be weighed against any improvement in

accuracy. The censored data EMA is an iterative

solution. For example, the number of iterations for

solution convergence was six and 36 for the Big

Sandy River and Elkhead Creek data sets, respect-

ively. On a modern desktop personal computer,

individual data set run times were less than about

2 s on average for the 36 data sets analyzed. EMA

computational disadvantages, as compared to B17H,

are negligible for these data sets.

Table 6

Non-exceedance probability test results for the 25 comparison sites. Numbers in italics indicate the fitted distribution is inconsistent with the

largest observation

Site name Qmax (m3/s) EMA B17H

Return period pp Return period pp

Type I censoring (13 sites)

Susquehanna River 28,880 1150 0.830 1700 0.879

Big Sandy River 708 165 0.458 154 0.433

Alabama River 9118 217 0.408 202 0.383

N. Fork Poudre River 268 90 0.230 129 0.357

Cache La Poudre River 339.8 126 0.318 135 0.344

First Creek 99.1 150 0.511 308 0.722

Bear Creek 146 7200 0.307 209 0.000

Santa Ana River 9060 226 0.603 293 0.678

Trinity River 750 2500 0.815 4700 0.899

Skagit River 14,160 620 0.731 870 0.800

Parana River 1705 221 0.423 279 0.505

Trent River 1420 590 0.631 730 0.692

Yangtze River 3110 6700 0.876 .100,000 1.000

Type II censoring (12 sites)

James River 8860 1600 0.785 940 0.663

Western Run 1080 3400 0.543 111,000 0.982

Savannah River 9910 213 0.336 305 0.467

Floyd River 2025 515 0.756 1300 0.896

Big Thompson River 883 5500 0.402 3500 0.242

Clear Creek 1420 9700 0.539 .1,000,000 0.998

Muddy Creek 142 4400 0.320 .1,000,000 0.999

Elkhead Creek 1410 6700 0.475 .1,000,000 1.000

Animas River 69.9 1000 0.369 650 0.214

Junction Creek 86.9 1600 0.532 .1,000,000 1.000

Santa Cruz River 1490 340 0.654 429 0.715

Coffee Creek 501 1000 0.448 125,000 0.994
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4.2. Binomial censored cases and multiple threshold

cases

Data from 11 sites are used to illustrate the

application of the EMA estimation procedure with

binomial, interval and multiple-censored data sets. Two

simple criteria are used to assess the performance of

EMA: the probability plot (qualitative), and the non-

exceedance probability test (quantitative). ARD and

MSD metrics were also estimated for the EMA curve as

above; however, results cannot be used in a strict

quantitative fashion due to the presence of binomial

and/or interval censored data. EMA results for the two

binomial censoring sites and nine multiple threshold

sites are displayed via probability plots in England

(1998). Results from selected sites are shown below.

Binomial and interval censored data are shown in a

range with vertical bars on the frequency plots. Because

peak discharge estimates are not precisely known, one

must use caution when comparing data plotting position

estimates to the computed frequency curve.

ARD and MSD results are shown with pp estimates

in Tables 7a and b, respectively. The LP-III

distribution appears to fit through the median portion

of the data reasonably well for all sites. Computed

ARDðgÞ values for the 11 sites are generally low (less

than 0.3). The estimated distribution also provides a

somewhat reasonable fit to the k above-threshold

floods; ARDðkÞ results are relatively low except for

the Escalante River data. As shown in Fig. 6, the k

flood magnitudes for this site are nearly equal, and are

disjoint as compared to the remainder of the data.

Webb and Baker (1987) suggest that the flood record

at this site is non-stationary. These large floods may

also have been produced from some different storm

mechanism than the other, lower magnitude flows

Table 7a

Results for the two binomial and nine multiple censoring sites using EMA (average relative deviation (ARD) and mean squared relative

deviation (MSD) criteria (plotting position a ¼ 0:4))

Site name No. observed

floods ðgÞ

Total floods $ Q0ðkÞ ARD MSD

ðgÞ (k floods) ðQmaxÞ ðgÞ (k floods) ðQmaxÞ

Binomial censoring (two sites)

Passage Creek 73 18 0.1310 0.2127 0.0664 0.0236 0.0506 0.0044

Thames River 92 5 0.0628 0.1352 0.3122 0.0081 0.0276 0.0975

Multiple censoring (nine sites)

Shenandoah River 89 41 0.0504 0.0499 0.1203 0.0040 0.0034 0.0145

Pecos River 101 20 0.1284 0.1221 0.3236 0.0254 0.0209 0.1047

S. Fk Ogden River 47 7 0.0519 0.0697 0.0419 0.0055 0.0059 0.0018

Escalante River 43 5 0.2076 0.4828 0.5287 0.0826 0.2458 0.2795

Virgin River 75 16 0.0848 0.1312 0.3512 0.0122 0.0233 0.1234

Colorado River 44 3 0.0793 0.0417 0.0480 0.0146 0.0026 0.0023

Salt River 75 16 0.1338 0.2129 0.5716 0.0301 0.0659 0.3267

Verde River 74 12 0.1175 0.1550 0.1342 0.0252 0.0286 0.0180

Santa Ynez River 85 4 0.1336 0.0777 0.0265 0.0245 0.0082 0.0007

Table 7b

Results for the two binomial and nine multiple censoring sites using

EMA (non-exceedance probability test criterion; numbers in italics

indicate the fitted distribution is inconsistent with the largest

observation)

Site name Qmax (m3/s) Return period pp

Binomial censoring (two sites)

Passage Creek 651 570 0.617

Thames River 1060 128 0.119

Multiple censoring (nine sites)

Shenandoah River 6513 290 0.412

Pecos River 26,844 77,000 0.944

South Fork Ogden River 53.5 71 0.348

Escalante River 725 910 0.100

Virgin River 1800 780 0.146

Colorado River 13,875 12,000 0.715

Salt River 4103 390 0.006

Verde River 5207 1600 0.276

Santa Ynez River 2491 1300 0.537
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(mixed population). In any case, it is virtually

impossible to fit a single, commonly used probability

distribution to the entire Escalante River data set

without investigating and separating mixed popu-

lation data (if it exists), and/or correcting for

stationarity. The data do not appear to obey the

traditional distribution requirement that observations

are ‘monotonically increasing.’

The probability plots reveal discrepancies in the k

exceedance flood observations that are not necessarily

reflected in the ARDðkÞ results. In addition to the

Escalante River data, at three sites (Passage Creek,

Salt River and Verde River), it appears a single

distribution cannot accurately fit the entire range of

data, probably due to mixed populations. For

example, EMA generally under-fits the Passage

Creek binomial and interval censored data in the

5–0.5 percent exceedance range, but does fit Qmax

well. At both the Salt River (Fig. 7) and Verde River

sites the data appear to have a prominent S-shape; the

k largest floods are not particularly well fit by the LP-

III distribution. It is virtually impossible to fit the

entire range of the Salt and Verde River data with one

of the commonly used 2- or 3-parameter distributions.

Stedinger et al. (1988b) censored about 70 percent of

the lower flows to provide a better fit to the upper

portion of the data.

The ARDðQmaxÞ and pp results shown in Tables 7a

and b indicate that the LP-III (EMA) distribution may

not provide an adequate fit to the maximum

observation at five sites (Thames, Pecos, Escalante,

Virgin and Salt Rivers). The pp results suggest that the

fitted distribution is inconsistent with and over

predicts Qmax for the Salt River. The ARDðQmaxÞ

and pp results also suggest the distribution over

predicts the largest flood for the Thames, Escalante,

and Virgin Rivers and significantly under predicts the

largest flood on the Pecos River. However,

the magnitude of the largest peak discharge on the

Thames River is not known with certainty; the

apparent lack of fit at this site may be an artifact of

not knowing the magnitude or being able to constrain

it to a narrower range. The lack of fit to the largest

flood at the other three sites may be due to several

factors, such as mixed-population data, and/or the fact

that nature may not follow simple 3-parameter

Fig. 6. Escalante River flood frequency plot (multiple censoring, site 22).
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probability distributions to describe peak discharge

probability relations for data from these long time

frames.

Moments-based estimation procedures, including

EMA, may not work so well for some paleoflood

non-exceedance bound cases on snowmelt-domi-

nated streams, without severe censoring. For

example, there are two paleoflood non-exceedance

bounds in the South Fork Ogden River data set

(Ostenaa et al., 1997). The main portion of the data

indicated a negative loge-space coefficient of skew

(21.08) that reflects a snowmelt-dominated record

(Fig. 8). The two paleohydrologic bounds appear to

be inconsistent with the general trend of the gage

data and potentially represent a different, larger

flood mechanism (mixed population) than snowmelt

that has caused the largest floods on record in the

basin. The estimated upper bound of the LP-III

(EMA) fitted distribution ðexpðtÞ ¼ 67 m3=sÞ is

inconsistent with the paleohydrologic bounds for

the South Fork Ogden River, because it is smaller

than the lower 400-year paleohydrologic bound

discharge (70 m3/s). As noted by Cohn et al. (1997,

p. 2091), when one uses the method of moments

(or L-moments) to estimate three parameters of a

probability distribution that is bounded such as LP-

III, GEV, P-III, etc. one or more observations may

lie outside the upper (lower) bound, and thus

outside distribution support. The main problem

with fitting these data with any three parameters

function is the apparent non-homogeneity or lack

of including floods that exceeded the paleohydro-

logic bounds (Fig. 8). Censoring lower flows using

EMA may provide a better fit to the observed data.

If there were paleofloods that exceeded one or

more of the thresholds at this site, the fit to the

paleoflood bounds would most likely improve.

Further work is needed to understand the relations

between paleohydrologic bounds, paleofloods and

gaging station flows, especially for mixed-popu-

lation data sets. Additional explorations in using

EMA are warranted, such as fitting longer, multiple

threshold historical and paleoflood data sets, and

for lower flow censoring (e.g. NRC, 1999).

Fig. 7. Salt River flood frequency plot (multiple censoring, site 25).
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5. Conclusions

A data base consisting of historical, paleoflood and

peak discharge information at 36 sites was compiled

for flood frequency analysis. Data from 25 sites were

utilized to compare B17H and EMA moments

estimators. Information at 11 sites consisted of

binomial and/or multiple censored data that B17H

could not use, but can be used by EMA. In terms of

practical application of these censored data models,

compilation of this 36-site data base revealed several

points. It was shown that both Type I and Type II

censored data are prevalent; thus, both types need to

be considered. Paleoflood information was available

at 19 of the 36 sites, thus indicating there are some

paleoflood data available, but the number of sites is

severely limited compared to gaging station records.

In addition, there were five or less floods with

historical/paleoflood information at 26 out of 36

sites. On the basis of this data base, additional efforts

should be invested in obtaining additional historical

and paleofloods, determining discharge censoring

thresholds and providing a physical understanding

for the flood recording mechanisms.

Three quantitative metrics of comparison (ARD,

MSD, and pp) and one qualitative method (probability

plots) were used to compare EMA and B17H.

Goodness-of-fit results for 25 data sets revealed that

EMA and B17H estimators perform equally well for

fitting the entire range of floods observed at each site

based on the two metrics, probability plots and

distribution considered. EMA outperformed B17H

for fitting the largest historical/paleofloods (k above-

threshold floods) and the largest flood at 11 out of 13

Type I sites and 10 out of 12 Type II sites.

Results from this data comparison study indicate

that EMA appears to be a viable alternative to current

B17H procedures from an operational perspective,

and performed equally or better than the existing

approach for the 25 data sets analyzed. This data

comparison study reinforces prior Monte Carlo

simulation results. An additional 11 binomial and

multiple censored data sets were utilized to demon-

strate EMA performance for these cases. It was shown

that the EMA estimator readily incorporates these

Fig. 8. South Fork Ogden River flood frequency plot (multiple censoring, site 21).
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types of information and the LP-III distribution

provides an adequate fit to the data in most cases.

The results shown here are encouraging. As EMA is

moments-based, it is consistent with the Bulletin 17B

guidelines. The Bulletin 17B document could be

revised to include an option for EMA as an alternative

or replacement to the existing historical weighting

approach.
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