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USGS Predicting Colorado Streamflow Based on Historic Climate Variability: A Case Study of the Cache La Poudre River

1.0 Introduction to Natural Climate Variability and Global Atmospheric Circulations that are Important to Colorado 3.0 Streamflow, Tree-Ring Indices, and Precipitation of the Cache La Poudre are Strongly Correlated to AMO and PDO Cycles

A prominent aspect of Colorado’s climate is its natural variability. This variability ranges over time and space, and includes localized thunderstorms to larger-scale storm systems, to droughts or drier than average periods that last for many years to many decades.

Some examples of this longer time-scale variability in climate might include a series of abnormally mild or exceptionally severe winters, and even a mild winter followed by a severe winter. Such variations are sometimes associated with the year-to-year changes in global weather patterns, such as the naturally occurring 3.1 Summary of Correlations Between Hydrologic Time Series and AMO or PDO Cycles: 4.0 Additi | Sci Need
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Figure 2.2 Raw hydrologic time-series: (A) tr\é%\—Rring from Owl Creek (1508 to 2002);
(B) Cache La Poudre River streamflow (1911 to 2005); and (C) monthly precipitation
totals at Ft. Collins (1931 to 2006).

rainfall or periods of extended drought. For example, all components of variability are aligned in the “dry” phase beginning in 1917, resulting in
drought conditions.

Because precipitation and streamflow are strongly correlated to AMO and PDO cycles (see 3.1 above), the
predictions demonstrated in Figure 3.2 can be used to forecast shifts in AMO and PDQO, and thus, when to
expect future periods of relative wet or dry conditions in surface-water resources.

Figure 2.1 Cache La Poudre River study area. Site locations of tree-ring time-series (purple circle), streamflow
time-series (red circle), and precipitation time-series (blue circle) are shown.
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